设为首页 | 加入收藏 | ENGLISH
首页关于我们科研团队科研平台研究项目人才培养成果转化国际合作招聘公告
当前位置: 首页>>技术转化>>正文

成果传播与转化

时间:[2018-01-12]  来源:

一、学术论文、科技报告

1). Y. Jiang, Y. Liang, X-F. Yuan, Super-resolution reconstruction of turbulence for Newtonian and viscoelastic fluids with a physical constraint, Physics of Fluids 36, 103114 (2024).

2).袁学锋、张沁丹、张艺敏、孟瑞繁、曹流、孔祥鹏,《作业环境仿真器与数字孪生平台课题绩效自评价报告》,2023年9月.

3).袁学锋、孔祥鹏、周鑫、张艺川、李荣辉、罗陆律雄、李佳佳、孟瑞繁、曹流、张沁丹,《作业环境仿真器与数字孪生平台验收报告》,2023年6月.

4). W-L. Feng, J. Zhong, T. Chen and X-F. Yuan, Scalability of Viscoelastic Fluid Solvers Based on OpenFOAM-PETSc Framework in Large-Scale Parallel Computing. Journal of Physics: Conference Series 2610 (2023) 012012.

5) Y-L. Huang, X-F. Yuan, StyleTerrain:A novel disentanglement model for controllable high-quality GAN-based procedural terrain generation. Computers and Graphics, 2023, 116, 373-382.

6) M. Ye, Y.-Q. Fan, X-F. Yuan, A General Deep Learning Method for Computing Molecular Parameters of a Viscoelastic Constitutive Model by Solving an Inverse Problem. Polymers 2023, 15, 3592.

7)Meng R, Cao L, Zhang Q. Study on the performance of variable-order fractional viscoelastic models to the order function parameters[J]. Applied Mathematical Modelling, 2023, 121: 430-444.

8) Wang, N., Li, S., Shi, L., X-F. Yuan, & Liu, H. (2023). Viscoelastic effects on the deformation and breakup of a droplet on a solid wall in Couette flow. Journal of Fluid Mechanics, 963, A18.

9)曹流, 孟瑞繁, 张沁丹, 张珞. 金属增材制造条件下二元合金三维微观组织的相场法-有限元法预测, 铸造, 2023, 72(4): 365-374.

10) C-Q Li, H. H. Winter, Y-Q Fan, G-X Xu, X-F. Yuan, Time-concentration superposition for linear viscoelasticity of polymer solutions, Polymers 15, 1807(2023). -- Editor’s Choice.

11) G-X. Xu, X-F. Yuan, Q-S. Liu, H. Wang, Concentration scaling on linear viscoelastic properties of cellular suspensions and effects of equilibrium phase behavior, Int. J. Mol. Sci. 24, 4107(2023).

12)Q. Zhang, S. Poncin, C. Blanchard, Y. Ma, and H. Z. Li, Coalescence of a ferrofluid drop at its bulk surface with or without a magnetic field, Langmuir 39, 461−468(2023)

13) Y-Q Fan, A. Lanzaro and X-F. Yuan, Universal concentration scaling on rheometric properties of polydisperse and high molecular weight polyacrylamide aqueous solutions, Chinese Journal of Polymer Science, 40, 1432-1440(2022).

14)袁学锋、孔祥鹏、周鑫、林宇、陈家庆、冯景燊、罗陆律雄、胡园梦、李佳佳、张艺川,《作业环境仿真器与数字孪生平台2022年度技术进展报告》,2022年11月。

15)Ruifan Meng.Predicting the creep behavior of concrete at high temperature using the variable-order fractional model, ENGINEERING COMPUTATIONS, 2022, DOI10.1108/EC-09-2021-0524. (SCI))

16)A. Lanzaroand X.-F. Yuan, A microfluidic prototype for high-frequency, large strain oscillatory flow rheometry,Micromachines2022, 13, 256.https://doi.org/10.3390/mi13020256.

17)A. Lanzaroand L. Gentile, “Rheology of Active Fluids”, in “Out-of-Matter Equilibrium Soft Matter: Active Fluids”, the Royal Society of Chemistry, 2022 (in press).

18)袁学锋、孔祥鹏、吴家明、陈晓聪、张艺川、周鑫、冯景燊、陈家庆、黎展鹏、孟瑞繁, 《作业环境仿真器与数字孪生平台中期检查报告》,2021年12月。

19)袁学锋、孔祥鹏、吴家明、陈晓聪、张艺川、周鑫、冯景燊、陈家庆、黎展鹏、孟瑞繁, 《作业环境仿真器与数字孪生平台2021年度技术进展报告》,2021年11月。

20)A. Lanzaro. A microfluidic approach to studying the injection flow of concentrated albumin solutions,SN Applied Sciences, 3:783, 2021.

21)Liu Cao.Workpiece-scale numerical simulations of SLM molten pool dynamic behavior of 316L stainless steel[J]. Computers and Mathematics with Applications, 2021, 96: 209-228

22)A. Lanzaro, A. Roche, N. Sibanda, D. Corbett, P. Davis, M. Shah, J. A. Pathak, S. Uddin, C. F. van der Walle, X.-F. Yuan, A. Pluen and R. Curtis, Cluster percolation causes shear thinning behaviour in concentrated solutions of monoclonal antibodies,Molecular Pharmaceutics, 18, 7, 2669–2682, 2021.

23)R. Meng. Application of fractional calculus to modeling the nonlinear behaviors of ferroelectric polymer composites: Viscoelasticity and dielectricity, Membranes, 2021, 11(6): 409.

24) M-Y. Luo, J. Xu, S. Lv, X-F. Yuan and X. Liang, Enhanced Thermal Insulation and Flame-Retardant Properties of Polyvinyl Alcohol-Based Aerogels Composited with Ammonium Polyphosphate and Chitosan,International Journal of Polymer Science, Volume 2021, Article ID 5555916, https://doi.org/10.1155/2021/5555916.

25)Liu Cao,Wei Guan. Simulation and analysis of LPBF multi-layer single-track forming process under different particle size distributions[J]. International Journal of Advanced Manufacturing Technology, 2021, 114: 2141-2157

26)Liu Cao. Mesoscopic-scale numerical investigation including the influence of scanning strategy on selective laser melting process[J]. Computational Materials Science, 2021, 189: 110263

27)Liu Cao.Numerical investigation on molten pool dynamics during multi-laser array powder bed fusion process[J]. Metallurgical and Materials Transactions A, 2021, 52: 211-227

28)Liu Cao.Mesoscopic-Scale Numerical Investigation Including the Influence of Process Parameters on LPBF Multi-Layer Multi-Path Formation[J]. Computer Modeling in Engineering & Sciences, 2021, 126(1): 5-23

29)Liu Cao.Mesoscopic-scale Numerical Simulation including the Influence of Process Parameters on SLM Single-layer Multi-pass Formation[J]. Metallurgical and Materials Transactions A, 2020, 51: 4130-4145

30) M. Shah, D. Corbett , A. Lanzaro, A. Roche , N. Sibanda, P. Davis, S. Uddin,C.F. van der Walle, R. Curtis, A. Pluen, Micro- and macro-viscosity relations in high concentration antibody solutions. European Journal of Pharmaceutics and Biopharmaceutics 153 (2020) 211–221

31)Liu Cao.Mesoscopic-scale simulation of pore evolution during laser powder bed fusion process[J]. Computational Materials Science, 2020, 179: 109686

32)袁学锋,陈晓聪,刘元恒,孔祥鹏,张艺川,吴家明,黎展鹏,李艺旋、周鑫,肖阳,《作业环境仿真器与数字孪生平台2020年度技术进展报告》,科技部专项2020年度技术进展报告。

33) M. Shah, D. Corbett, A. Lanzaro, et al. Micro- and macro-viscosity relations in high concentration antibody solutions[J]. EUROPEAN JOURNAL OF PHARMACEUTICS AND BIOPHARMACEUTICS, 2020, 153: 211-221.

34)Liu Cao. Mesoscopic-scale Numerical Simulation including the Influence of Process Parameters on SLM Single-layer Multi-pass Formation[J]. Metallurgical and Materials Transactions A, 2020, 51: 4130-4145.

35)Liu Cao. Workpiece-scale numerical simulations of SLM molten pool dynamic behavior of 316L stainless steel[J]. Computers and Mathematics with Applications, 2020, DOI: 10.1016/j.camwa.2020.04.020.

36)Liu Cao. Mesoscopic-scale simulation of pore evolution during laser powder bed fusion process[J]. Computational Materials Science, 2020, 179: 109686.

37) Guangjian Xiang, Deshun Yin, Ruifan Meng, Siyu Lu. Creep model for natural fiber polymer composites (NFPCs) based on variable order fractional derivatives: Simulation and parameter study[J]. Journal of Applied Polymer Science, 2020, 137.

38) Guangjian Xiang, Deshun Yin, Ruifan Meng, Chenxi Cao. Predictive model for stress relaxation behavior of glassy polymers based on variable‐order fractional calculus[J]. Polymers for Advanced Technologies, 2020.

39)Liu Cao. Study on the numerical simulation of laying powder for selective laser melting process[J]. International Journal of Advanced Manufacturing Technology, 2019, 105: 2253-2269.

40)Liu Cao. Numerical simulation of the impact of laying powder on selective laser melting single-pass formation[J]. International Journal of Heat and Mass Transfer, 2019, 141: 1036-1048.

41)Liu Cao, Xuefeng Yuan. Study on the Numerical Simulation of the SLM Molten Pool Dynamic Behavior of a Nickel-Based Superalloy on the Workpiece Scale[J]. Materials, 2019, 12: 2272.

42)Ruifan Meng, Deshun Yin, Corina S. Drapaca. A variable order fractional constitutive model of the viscoelastic behavior of polymers, International Journal of Non-Linear Mechanics, 2019, 113: 171-177.

43)Ruifan Meng, Deshun Yin, Haixia Yang; Guangjian Xiang. Parameter study of variable order fractional model for the strain hardening behavior of glassy polymers, Physica A: Statistical Mechanics and its Applications, 2019, 545: 123763.

44)Ruifan Meng, Deshun Yin, Corina S. Drapaca. Variable-order fractional description of compression deformation of amorphous glassy polymers, Computational Mechanics, 2019, 64(1): 163-171.

45)Ruifan Meng, Deshun Yin, Siyu Lu, Guangjian Xiang. Variable-order fractional constitutive model for the time-dependent mechanical behavior of polymers across the glass transition, European Physical Journal Plus, 2019, 134 (8): 376.

46) 陆思宇, 殷德顺, 孟瑞繁. 高聚物PETG的应力松弛行为的实验研究与分数阶模型[J]. 高分子材料科学与工程, 2019.

47)Liu Cao, Dunming Liao, Fei Sun, Tao Chen. Numerical simulation of cold-lap defects during casting filling process[J]. International Journal of Advanced Manufacturing Technology, 2018, 97: 2419-2430.

48)Liu Cao, Fei Sun, Tao Chen, Yulong Tang, Dunming Liao. Quantitative prediction of oxide inclusion defects inside the casting and on the walls during cast-filling processes[J]. International Journal of Heat and Mass Transfer, 2018, 119: 614-623.

49)A. Lanzaro, D. Corbett, X-F. Yuan. Non-linear Dynamics of semi-dilute PAAm Solutions in a Microfluidic 3D Cross-slot Flow Geometry. J. Non-Newtonian Fluid Mechanics, 242, 57-65 (2017).

50) Y. Wang, F. Serracino-Inglott, X. Yi, X. Yang, X-F. Yuan. An Interactive Computer-based Simulation System for Endovascular Aneurysm Repair Surgeries[J]. Computer Animation and Virtual Worlds, 27, 290-300 (2016).

51) Y. Wang, F. Serracino-Inglott, X. Yi, X-F. Yuanand X. Yang, "Real-time Simulation of Catheterization in Endovascular Surgeries", Computer Animation and Virtual Worlds, 27, 185-194 (2016).

52) W. Yi, D. Corbett and X-F. Yuan, "An improved-Rhie-Chow interpolation scheme for the smoothed-interface immersed boundary method", International Journal for Numerical Methods in Fluids, 82(11), 770-795 (2016).

53)W. Yi, D. Corbett and X-F. Yuan, “A sharp-interface Cartesian grid method for viscoelastic fluid flow in complex geometry”, J. Non-Newtonian Fluid Mechanics, 234, 82-104 (2016).

二、授权专利与软件著作权、专利申请

1)袁学锋、袁松洋、Alfredo Lanzaro、张绍林,一种低雷诺数下高效剥离二维材料的方法和装置,中国知识产权局发明专利授权,专利号:ZL 2019 1 0246708.8,2023.09.15。

2)李荣辉,《面向分布式并行仿真计算的通信管理智能系统及方法》专利已受理,申请号:2023103371888,申请日:2023 年03 月31 日

3)张鑫桂,陈韬,洪卓,梁远飞,冯炜亮, 《一种移植FENE-P模型构建OpenFOAM求解器的方法》专利已受理,申请号:202211080190.3,申请日:2022年9月29日

4)张鑫桂,陈韬,洪卓,梁远飞,冯炜亮, 《一种移植FENE-P模型构建OpenFOAM求解器的方法》专利已受理,申请号:202211080190.3,申请日:2022年9月29日

5)张鑫桂,陈韬,洪卓,梁远飞,冯炜亮, 《一种移植FENE-P模型构建OpenFOAM求解器的方法》专利已受理,申请号:202211080190.3,申请日:2022年9月29日

6)张鑫桂,陈韬,洪卓,梁远飞,冯炜亮, 《一种移植FENE-P模型构建OpenFOAM求解器的方法》专利已受理,申请号:202211080190.3,申请日:2022年9月29日

7)广州大学,一种实时无线通信仿真方法、系统及介质,202111494888.5,2021年12月8日。

8)广州大学,一种基于OpenFOAM的壁湍流维持方法,202111144475.4,2021年9月28日。

9)广州大学,一种生成各向通信湍流脉动速度场方法,202111142619.2,2021年9月28日。

10)广州大学,一种跨异构平台的通信技术方法、系统及介质,202110710589.3,2021年6月25日。

11)广州大学,一种跨异构平台的通信技术方法、系统及介质,202110710589.3,2021年6月25日。

12)袁学锋、吴文波、曹流、毛西月,一种静脉回输注射装置,中国知识产权局授权专利,2020.04.28。

13)袁学锋、鲁志龙、毛西月、曹流,一种应用于大规模细胞培养的多级连续式系统,中国知识产权局授权专利,2019.12.10。

三、国内外学术会议特邀报告

1)袁学锋, “AI+HPC+5G” based Digital Twins Platform and Open Source Eco-system for Smart Manufa cturing and Integrated Precision Farming, in International Conference on Emerging 4th Industrial Revolution (4IR) Technologies for Sustainable Development, 22nd July, 2021,China.

2)袁学锋,极端非线性流动条件下高分子溶液多尺度动力学研究进展,主旨报告,中国化学会第32届学术年会流变学分会,2021年4月19-22日,珠海国际会展中心。

3)袁学锋,Leveraging Multiphase FSI, HPC and AI Technologies in the Fight Against COVID-19,特邀报告,The CCP-WSI Code Developers Online Workshop 2,2021年4月7日,线上国际研讨会,英国。

4)袁学锋,Role of 4th Industrial Revolution (4IR) Technologies to Drive Inclusive Economic Growth During the Pandemic,Regional Workshop on New Paradigms of Innovation and Technology to Address the Challenges of COVID-19 Pandemic,3 November 2020, Tashkent, Uzbekistan。

5)袁学锋,Leveraging 4th Industrial Revolution (4IR) Technologies in the fight against COVID-19,the International Conference On Emerging Technologies to Combat the Covid-19 Pandemic,1 December 2020,Guangzhou, China。

6)袁学锋,当新冠肺炎遇到系统流变学,大会报告,第15届全国流变学学术会议,2020年12月5-7日,重庆大学。

7)袁学锋,复杂聚合物流体的微纳形貌工程,流变学应用论坛专题特邀报告,第15届全国流变学学术会议,2020年12月5-7日,重庆大学。

8)孟瑞繁,高聚物跨越玻璃转变力学行为的变分数阶本构模型,口头报告,第15届全国流变学学术会议,2020年12月5-7日,重庆大学。

9)梁远飞(报告人)、袁学锋,湍流复杂涡结构的并行计算及表征,口头报告,第15届全国流变学学术会议,2020年12月5-7日,重庆大学。

10)李远超(报告人)、袁学锋,惯性湍流直接数值模拟和粘弹流并行计算求解器的初步研究,口头报告,第15届全国流变学学术会议,2020年12月5-7日,重庆大学。

11)范远棋(报告人)、袁学锋,多分散高分子量聚合物溶液在剪切和拉伸流场下动力学性质与浓度依赖关系的实验研究,口头报告,第15届全国流变学学术会议,2020年12月5-7日,重庆大学。

12)方茜(报告人)、袁学锋,在剪切流场下氧化石墨烯悬浮液的流变学实验研究,口头报告,第15届全国流变学学术会议,2020年12月5-7日,重庆大学。

13)袁学锋,系统流变学与先进材料和器件的智能制造,特邀报告,广东省季华大讲堂,2019.12.17。

14)袁学锋,高分子材料基因工程协同架构及关键技术,特邀报告,首届(2019)高分子材料基因组论坛2019年11月30-12月1日 北京化工大学。

15)袁学锋,精准药物设计与输运过程模拟,主旨报告,中国化学会第15届全国计算(机)化学学术会议,2019年11月14-17日,上海。

16)袁学锋,Intelligent Manufacturing in the Digital Age and Enablers for Technology Transfers, Keynote,International Conference on Emerging Technologies for Achieving Sustainable Development Goals (SDGs),5 November 2019, Hotel Istana, Kuala Lampur, Malaysia.

17)袁学锋,Non-linear Dynamics of Polymer Solutions in Microfluidic Flows, Keynote, The 1st Workshop on Microscaled Flow, Heat Transfer and Rheology of Complex Fluids, Sun Yat-sen University (Zhu Hai), August 15th, 2019.

18)袁学锋,非平衡态高分子溶液动力学理论与计算机模拟进展,主旨报告,中国力学大会-2019 S22 流变学进展,中国•杭州 2019年8月25-28日。

19)袁学锋,软物质微纳形貌工程: 理论与计算机模拟仿真,主旨报告,2019复杂流体流变学学术研讨会 ,杭州师范大学 2019年8月2-4日。

20)袁学锋,Dynamics of Complex Fluids in Highly Nonlinear Flow Regime: Experiments and Modelling,特邀报告/北京航空航天大学,中国科学院数学与系统科学院,2018年11月8-10日。

21)袁学锋,Intelligent Manufacturing in the Digital Age – Perspectives from China,特邀报告,联合国亚太地区经济和社会发展委员会新工业革命论坛,2018年10月22-24日。

22)袁学锋,弹性湍流的数学建模与计算模拟,邀请报告/中国力学学会、化学学会第十四届全国流变学学术会议,2018年10月20-22日。

23)袁学锋,半稀高分子溶液在微流通道中的非线性流体行为与计算模拟,特邀报告,中国科学院学部,2018年9月1-2日。

24)袁学锋,调控喷墨打印复杂流体的系统化策略,特邀报告,南京大学,2018年8月24-25日。

25)袁学锋,新一代信息技术助力系统健康医学发展,特邀报告,中国现代化协会第十六期研究论坛:健康现代化与健康中国,2018年8月21-23日。

26)袁学锋,Non-linear Dynamics of Macromolecular Solutions in Microfluidics through an Integrated Approach,特邀报告,第七届亚太地区流变学学术会议,2018年6月10-15日。

27)袁学锋,Design of Solution Processing Method for Fabrication of Semiconductor Device through an Integrated Approach,特邀报告,华南师范大学,2018年04月07-09日。

28)袁学锋,Innovation for Intelligent Manufacturing Driven by Cloud HPC,欧洲高性能计算与工业应用委员会,2017年5月15-20日。

29)袁学锋,Current and Future Development of ICT and HPC in China,科技部国际合作司主办、广东省科技厅协办,广州大学承办首届金砖国家在HPC和ICT领域的科技创新合作专家工作组会议暨合作论坛,2017年4月23-26日。